
Concero Whitepaper
Concero v1.0

Andy Bohutsky, Oleg Kron

Table of Contents

Abstract...3
1. Introduction..4

1.1 Functionality.. 4
1.1.1 Value Transfer... 4
1.1.2 Messaging... 4
1.1.3 Gas/Fee Abstraction..5
1.1.4 Single-Chain Execution.. 5

2. Technical overview...5
High Level Design Choices... 5
Reason for Design Choices..5

2.1 Concero Stack.. 6
2.1.1 Top Layer.. 6
2.1.2 Execution Layer.. 6
2.1.3 Settlement Layer... 6

2.2 Liquidity Provision.. 6
3. Infrastructure breakdown...7

3.1 Single-chain Execution.. 7
3.2 Cross-chain asset migration... 8

3.2.1 Cross-chain execution...8
3.2.2 Specifics of Chainlink Functions as the execution layer.. 8

Runtime nonce clashing...9
Execution code storage.. 9
Limits... 9

3.2.3 Settlement... 9
3.3 Gas Abstraction..9
3.5 Risk Mitigation.. 10

3.5.1 Cross-Chain Execution Layer risks.. 10
Transaction Failure risk... 10
Logging risk... 11
Consensus risk..11
DON-Hosted secrets leakage leak..11

3.5.2 Proxy deployer key leakage risk... 11
3.5.3 External contracts risk...11
3.5.4 Chain reorganisation risk.. 12

3.5.5 Settlement layer failure risk.. 12
3.5.6 Low liquidity risk..12

4. Liquidity Infrastructure..13
4.1 Architecture..13
4.2 Liquidity Usage..13
4.3 Deposits..14

4.3.1 Liquidity calculation... 14
4.3.2 Liquidity token issuance... 15
4.3.3 Cross-Chain Liquidity Distribution.. 15

4.4 Withdrawals... 15
4.4.1 Initiating withdrawal...15
4.4.2 Collecting cross-chain liquidity.. 15
4.4.3 Completing withdrawal...16
4.4.4 Withdrawal cooldown period..17

5. Messaging..17
5.1 Airport contracts.. 17
5.2 Execution layer.. 18
5.3 Risks...18

5.3.1 Arbitrary contract interaction..18
5.3.2 Execution layer... 18

6. Fees & Economic Viability.. 19
6.1 Fee Structure.. 19
6.2 Capital Efficiency.. 19
6.3 Liquidity Provision.. 20
6.4 Liquidity Cap... 20

7. What’s next?...20
7.1 Concero v2...21
7.2 Concero Token... 21

8. Acknowledgements.. 21
9. References...21

Abstract
Concero is a fully decentralised abstracted cross-blockchain protocol able to facilitate secure value and
message transfers in under a minute. Existing cross-chain solutions have to trade security for speed and
vice-versa while Concero has been built to be secure and quick at the same time, while being fully
decentralised.

Before designing Concero infrastructure, we have spent a lot of time building, iterating and collecting
user feedback with different cross-chain aggregation MVPs. This has been done in order to understand
user requirements and solve problems that the end users are facing. After thousands of survey results and
usage data points we have boiled down user requirements for cross-chain transactions to three main
attributes: Speed, Security and Ease of Use. After trying to look for infrastructure that is able to adhere to
these attributes, we found that it does not exist, which laid the foundation behind Concero Protocol

We have also set ourselves a strict set of parameters when building this protocol. It had to be fully
decentralised, economically feasible for all participants, and fully transparent. As the entire blockchain
industry was built on the core principles of transparency, decentralisation and permissionless access, we
believe that it is imperative for protocols to adhere to these principles and Concero does just that.

1 Introduction
Although there are many cross-chain interoperability solutions available on the market right now, a lot of
them are cutting corners with centralisation. This is a very dangerous trend that is seen on the market as
de facto control of cross-chain transactions being executed is concentrated amongst a small group of
people. This may lead to a plethora of problems, starting from abuse of vulnerabilities in centralised
structures with malicious intents to censorship and dictatorial control by insiders.

With something so fundamental as cross-chain interoperability, it is imperative that the fundamental
principles of the industry are adhered to in order to allow developers the freedom of building with
minimal to no counterparty risk.

1.1 Functionality
There are four distinct functions of Concero Protocol that have been built in order to provide developers
with all of the necessary tooling to build cross chain apps:

1.1.1 Value Transfer
Migrating (‘bridging’) assets between blockchains using an intent-based system with optimistic
execution. Liquidity providers incur finality risk and are compensated with a fee for bearing this risk.
Intents are verified and transmitted using our messaging functionality.

1.1.2 Messaging
Transmitting messages between blockchains using our execution layer. Messages are verified on the
source blockchain and a message is transmitted to the destination blockchain using the decentralised
compute of the execution layer and a messenger wallet. The incoming unconfirmed message triggers a
check on the destination chain with the purpose of verifying the source chain message before releasing it
on the destination chain. The check is in place to ensure that even if private keys of messenger wallets get
leaked, the attacker is still not going to be able to confirm illegitimate transactions.

1.1.3 Gas/Fee Abstraction
The abstraction of destination chain gas and fees allows users to pay them in native token of the source
chain or in one of the ‘bridgeable’ assets (in V1 $USDC) at the moment of bridging. As $USDC is the
only supported bridgeable token, the user doesn’t need to have it prior to the transaction, as it will be
seamlessly swapped before bridging. Gas abstraction also allows users the freedom to not have
destination chain gas in order to complete a cross-chain transaction, which plays a crucial role in
frictionless user experience.

1.1.4 Single-Chain Execution
Responsible for executing single-chain transactions through our orchestrator contracts on both the source
and destination chains. Users will be able to execute single or multi-step transactions with a single
signature and within the same transaction. A single source-chain function call is also relevant for
cross-chain transactions as part of the efforts to simplify the user experience. We anticipate various
projects developing their own routing algorithms to create call-data (routes) for users based on their
intents and building more complicated yield strategies that can be executed through Concero Protocol.

2 Technical overview

High Level Design Choices
1. Existing networks and infrastructure was chosen for message relaying and settlement. For the

launch of V1, we have chosen Chainlink CCIP as a settlement layer and Chainlink Functions as
the execution layer, given Chainlink’s decentralised off-chain compute is sufficiently
decentralised and reliable.

2. We have kept the infrastructure modular in order for new settlement layers and execution layer
networks to be added in an easy manner as the protocol is developed and expanded further.

Reason for Design Choices

Building our own network from scratch would present a chicken-and-egg problem: the protocol needs
volume and value to attract node operators, and it needs node operators to generate volume and value.
Many other protocols combat this issue by setting up their own main nodes that account for a large
proportion of the volume (this is inadequate due to centralisation risk) or by burning through capital to

incentivise node operators (very expensive and flawed approach). We see neither of these approaches as a
viable option for Concero, hence we decided to use existing infrastructure to attract volume/value and
expand the protocol further with the demand.

2.1 Concero Stack

Concero ‘Stack’ consists of three distinct layers:

2.1.1 Top Layer
Top Layer is where all the intents are collected and where all the apps and users connect to through our
SDK, API and Applications. A direct on-chain interaction is also possible through Concero Solidity Dev
Kit (Concero Endpoints).

2.1.2 Execution Layer
Execution Layer is an on-chain layer where all the orchestrator contracts (with proxies to other protocols),
liquidity pools, execution networks (in V1 Chainlink Functions) and ancillary Concero smart contracts
reside.

2.1.3 Settlement Layer
Settlement Layer is used to settle transactions that are executed by the execution layer and to rebalance
liquidity and the entire system periodically (In V1 Chainlink CCIP).

2.2 Liquidity Provision
Liquidity Providers will be able to provide ‘bridgeable’ tokens (in V1 $USDC only) into Concero
Liquidity Pools. This liquidity facilitates sub-minute cross chain transactions by optimistic loans that will
be taken on the destination chain after confirming that the source chain funds are en route through the
settlement layer. LPs will earn yield from user fees paid to use the Concero Protocol while assuming

chain reorg risk. Liquidity will be provided into a Parent Pool on the BASE blockchain and will be
automatically distributed into Child Pools on all supported chains, ensuring that every liquidity provider
is uniformly exposed to all of the fees collected by the protocol.

3 Infrastructure breakdown

Step-by-step breakdown:
1. User sends the assets to the contract on the source chain through a Transparent Proxy
2. Proxy passes the message to the orchestrator, which manages the flow of the transaction
3. The orchestrator performs a source-chain swap in order to obtain a bridgeable asset
4. The orchestrator calls the migration contract to migrate assets to the DST chain
5. The assets are sent to the settlement layer (CCIP), which triggers the execution layer
6. Source chain functions are triggered to put transaction in the queue on the destination chain
7. TX is put in the queue which triggers the check from the destination chain
8. Destination chain CL Functions ensures the transaction exists on the source chain
9. DST migration contract receives tx confirmation from the source chain via CL Functions
10. Orchestrator continues TX on the destination chain
11. Orchestrator obtains a loan from the Pool to proceed with TX
12. An optional swap is performed to obtain the destination asset
13. Asset is sent to user
14. Asset received from the settlement layer (CCIP) into the destination chain pool.

3.1 Single-chain Execution
The single-chain executor contract is responsible for interacting with protocols within the same chain.
These include Decentralised Exchanges, Lending protocols, etc. For cross-chain transactions, in which the
source token itself isn’t bridgeable, the executor is responsible for transferring the source token into a
bridgeable one. After the approval for token spending, the executor contract’s entrypoint function takes an
array of actions as a parameter and runs them on third-party protocols in order of their presence in the
array. This allows to complete a complex multi-step transaction with a single function call.

3.2 Cross-chain asset migration
The Cross-Chain asset migration infrastructure of Concero consists of three key parts. The execution
layer, responsible for fast-tracking the transaction en route, surpassing the chain finality. The settlement
layer, a secure, finality-bound mechanism for sending assets across chains with additional security checks,
provided by Chainlink CCIP. Finally, the liquidity pools, the liquidity of which is used by the execution
layer for obtaining optimistic loans, after a minimum amount of block confirmations is obtained.

3.2.1 Cross-chain execution

Adds the transaction to the unconfirmed queue on the destination chain, which indicates that a cross-chain
transaction has begun settlement on the source chain. Uses a threshold-encrypted messenger wallet
private key hosted in Chainlink DON-Hosted secrets in order to add the transaction to the queue, passing
through the list of allowed messenger addresses present in every contract. Despite the security &
encryption of the DON-Hosted secrets, the incoming transaction requests are not trusted by default, and
an additional check is performed. The destination contract, which receives the unconfirmed transaction
from the authorised messenger, begins the confirmation process by triggering an additional set of
Chainlink Functions from its own chain.

The purpose of Destination chain Chainlink Functions is to confirm whether the transaction has indeed
been submitted to the source chain and if it has successfully entered CCIP. Using a randomised RPC
provider inside the JavaScript code of Chainlink Functions, each of the 4 nodes performs an RPC call to
read a specific event. This event confirms that the transaction has indeed entered the settlement layer
(CCIP), thus indicating the beginning of the settlement process.

Additionally, the destination chain Chainlink Functions code holds responsibility for ensuring a specific
number of block confirmations on a confirmed source-chain transaction before submitting a successful
result to the destination contract. The minimum amount of block confirmations depends on the risk factor
of each transaction that enters the bridging infrastructure.

Minimum number of confirmations for each chain can be found in our documentation at docs.concero.io

3.2.2 Specifics of Chainlink Functions as the execution layer

Chainlink Functions execution is initiated on chain, with the computation taking place off chain on a set
of 4 nodes randomly picked from the Decentralised Oracle Network. Then, the consensus is made on each
of the responses and submitted back to the initiating contract.

Runtime nonce clashing
The nature of a simultaneous code execution brings several unique problems, such as the Nonce clashing,
which occurs when nodes are attempting to submit a transaction to the blockchain at the same time. In
order to circumvent nonce clashing, the following measures are taken:

- Randomised messenger wallets: when signing a transaction, each node takes a randomly picked
wallet from the messengers list, which significantly reduces the risk of nonce clashing with the
same wallet.

- Transaction retries: in case the nonce clash occurs in the node, it picks another random wallet,
fetches an up-to-date transactions count for that wallet, and attempts to post a transaction once
again. This process is repeated until the execution time limit is reached.

Execution code storage
In order to store the execution JavaScript code securely and efficiently, while minimising inconsistencies
with library resolutions that may occur during the runtime, a CDN is used, the link to which is present
inside the contract, along with minimal initialisation logic. In order to ensure that the code is not tampered
with during import, a SHA-256 hash sum is checked, before the code is executed. This keeps the contracts
size to a minimum, reduces inconsistencies and ensures the authenticity of the code, the source of which
can be reviewed by anyone online.

Limits
The 120-second execution time limit is sufficient for awaiting the minimum amount of confirmations
required to pass the transaction onto the destination chain. Additionally, the limit leaves room for
transaction retries, in case they are required.

The 20-HTTP-requests limit is also sufficient for running all of the necessary RPC calls in order to pass &
verify the existence of source-chain transaction, with room for transaction retries.

3.2.3 Settlement

Chainlink CCIP is chosen as a reliable and secure settlement layer due to its multi-layered security
architecture. As soon as funds enter CCIP on the SRC chain, a corresponding event is emitted and the
execution layer begins the acceleration process. On the destination chain, the funds are first taken from
the liquidity pool as a short-term loan. Depending on the settlement layer execution time, (~24 minutes
for Chainlink CCIP) it repays the loan, thus settling the transaction.

3.3 Gas Abstraction
One of the key components in providing the easiest user experience is gas abstraction. Not having enough
gas on the destination chain for a cross-chain transaction remains to be the biggest reason for users
abandoning cross-chain transactions. The infrastructure of Concero allows a user to perform the entire
multi-step cross-chain transaction by signing a single message on the source chain.

For cross-chain bridging, in order to facilitate gas-abstracted transactions, a portion of the bridgeable
source-chain token ($USDC) is taken in accordance to the following formula:

𝑡𝑜𝑡𝑎𝑙𝐺𝑎𝑠𝐹𝑒𝑒𝑠_𝑈𝑆𝐷𝐶 = (0.75 × 1018 × 𝑠𝑟𝑐_𝑔𝑎𝑠𝑃𝑟𝑖𝑐𝑒 + 0.75 × 1018 × 𝑑𝑠𝑡_𝑔𝑎𝑠𝑃𝑟𝑖𝑐𝑒)
𝑈𝑆𝐷𝐶_𝑡𝑜_𝑁𝑎𝑡𝑖𝑣𝑒_𝑟𝑎𝑡𝑒

Additionally, the following variables are taken into account when calculating the fees:
- Execution layer fees in $LINK (ChainlinkFunctions)
- Settlement layer fees in $LINK (ChainlinkCCIP)
- Concero fees – 10 bps of source token
- LP fees – 10 bps of destination token

𝑡𝑜𝑡𝑎𝑙𝐹𝑒𝑒𝑠_𝑈𝑆𝐷𝐶 = 𝑡𝑜𝑡𝑎𝑙𝐺𝑎𝑠𝐹𝑒𝑒𝑠_𝑈𝑆𝐷𝐶 + 𝑒𝐹𝑒𝑒𝑠 + 𝑠𝐹𝑒𝑒𝑠 + 𝑐𝐹𝑒𝑒𝑠 + 𝑙𝑝𝐹𝑒𝑒𝑠

3.5 Risk Mitigation

3.5.1 Cross-Chain Execution Layer risks

Transaction Failure risk
The messenger wallet, which calls a function on the destination chain in order to place the en route
transaction into the unconfirmed queue may fail due to several reasons, the risks of which can be
minimised.

- Insufficient balance for the messenger wallet: this may occur in case the wallet’s balance is not
kept track of, which may lead to insufficient native balance required for signing a transaction on
the destination chain. At the moment, an off-chain watcher is used, however Concero plans to
introduce a fully decentralised system which will keep track of and top up messenger wallets in a
transparent and secure manner.

- RPC call failures: since the execution code uses centralised, publicly available RPC providers,
such as Alchemy, Infura, etc., not only does trust has to be minimised in order to ensure the
reliability of data (see Consensus risk), the RPC node may not always be online. In order not to
be exposed to the node unavailability risk, the retry mechanism is put in place, which takes a
random RPC endpoint from the endpoints list, and retries the request with a different provider. In
order to provide reliable service, the uptime of RPC endpoints must be regularly reviewed with
endpoint replacements in case they are required. List of RPC Endpoints used can be found in our
documentation at docs.concero.io

For cross-chain transactions, which involve migrating assets to a different chain, the logical flow of
Concero’s infrastructure eliminates the risk of lost funds in case of a failure in the execution layer, as it’s
only triggered when a success has been received from the settlement layer. This indicates that the funds
are already on the way to the destination chain and will be available there regardless of the execution
layer. This ensures that in the worst case scenario, there is no value loss for the end user.

Logging risk
One of the security risks that Chainlink Functions bring is the possible secret leakage through the error or
console output, which is encoded and returned on-chain at the end of the execution. Therefore, in order to
mitigate the risk of such leakage, all errors must be handled strictly and no arbitrary errors should be
returned from the code, in case they don’t fit the handled cases.

Consensus risk
The fact that the consensus is made on the responses of only 4 nodes, introduces the risk of unreliable
consensus. In efforts to mitigate such risk, additional measures are taken. As such, the RPC endpoints
present in the executed code are randomised within each node, which drastically lowers the risk of
tampering with the returned data, as all 4 of the nodes will have to come to consensus on the responses
provided by different RPC endpoints. Additionally to the uptime of the RPC endpoint itself (see
Transaction Failure risk), the endpoints must be regularly reviewed and replaced in case needed in order
to minimise the probability of malicious or ingenuine query results.

DON-Hosted secrets leakage leak
Chainlink Functions, as the execution layer, utilises a threshold-encrypted secret storage, hosted on the
Decentralised Node Network of Chainlink. The secrets are only decrypted via a multi-party decryption
process Chainlink Functions Beta. In the event of a leak, the contents of the secrets are encrypted, which
keeps the allowlisted messenger wallet private keys uncompromised.
However, trust is still placed on the integrity of each individual Chainlink node, which gets access to the
private keys during runtime, and may capture them in case the node is malicious. This is the primary
reason for considering the unconfirmed transactions queue untrusted by default, requiring a compulsory
source-chain check.

3.5.2 Proxy deployer key leakage risk
One of the key points of control for the entire infrastructure is the proxy deployer, the private key of
which, if not managed properly, can lead to catastrophic consequences for the system.
A set of measurements and policies is put in place include the following:

- Proxy deployer key is stored externally, away from the workstations
- The access to the proxy deployer key is reduced to a minimum and strictly controlled
- A multi-signature set of keys is used in order to remove a single point of authority

https://docs.chain.link/chainlink-functions#:~:text=Furthermore%2C%20Chainlink%20Functions%20allows%20you,participation%20from%20other%20DON%20nodes.

3.5.3 External contracts risk
It’s crucial to eliminate the potential attacks that can be taken by arbitrary token contracts the single-chain
execution contract interacts with. These attacks include, but not limited to Reentrancy or Denial of
Service attacks. In order to mitigate them, the following measures are put in place:

- Reentrancy guards
- Safe, Checked calculations
- Access control
- Gas limits for external calls
- FeeOnTransfer token handling

3.5.4 Chain reorganisation risk
Chain reorganisation occurs when a blockchain reorganises its blocks due to the arrival of a longer chain
of blocks. This disrupts the order of transactions and leads to double-spending risks, which directly affects
the infrastructure of Concero. Even though chain reorgs occur rarely and don’t pose a significant risk due
to the efficiency of liquidity usage for Concero, the main measure put in place in order to minimise the
likelihood of double-spending in case of a chain reorg is the minimum amount of confirmations that has
to be awaited by the execution layer, depending on the per-transaction risk factor, as well as the universal
minimum amount of confirmations required for any transaction passing through the infrastructure.

3.5.5 Settlement layer failure risk
Considering the security of Chainlink CCIP, the risk of transaction failures after the funds have been
successfully sent into CCIP on the source chain are minimal. Regardless of this, it’s important to ensure
the security of the funds that the end user is sending through the system. In case the execution layer has
already issued the optimistic loan on the destination chain, but settlement has failed on the way, the net
amount of funds in the infrastructure would not suffer from a loss, and the user would be able to retry the
transaction on the settlement layer. If such failure occurs, there will be no destination chain operations
taking place in order to ensure the funds are to arrive safely to the user’s wallet, therefore a bridgeable
$USDC token will be sent directly to the user’s wallet.

3.5.6 Low liquidity risk
Sufficient liquidity on the destination chain is essential for taking optimistic loans while the transaction
settlement is in progress. It plays an essential role in Concero's fast-tracking in the execution layer. In
order to minimise the likelihood of insufficient liquidity on the destination chain, the following measures
are put in place:

- Transaction simulation: A complex estimation of the entire flow of the transaction, which reduces
the risk of failures. May not be available in contexts of solidity-level integrations, as it’s not
enforced, but highly recommended

- Liquidity checks on the destination chain: A simple, highly available check which can be
performed by integrators off-chain, before running a transaction.

The maximum liquidity cap will get adjusted in accordance to the utilisation volume of the liquidity
leaving a liquidity buffer in order to minimise the transactions which risk to be on the fence of reverts due

to low liquidity. It’s important to note, that in the worst case scenario there will be no value loss for the
user, in case a transaction with insufficient destination chain liquidity is executed, bypassing the optional
simulations and liquidity checks. As the execution layer is only triggered while the transaction is on the
way through the settlement layer, the user will receive his funds in the form of a bridgeable asset on the
destination chain when the settlement layer completes operation.

4 Liquidity Infrastructure

4.1 Architecture

The architecture of liquidity pools involves the Parent Pool, hosted on a single chain, and Child Pools,
deployed to the rest of the supported chains. The Parent pool has the exclusive rights to control liquidity
on each of the child pools.

The advantage that this architecture brings is the ease of use for the liquidity providers, as the fee is
earned universally throughout all the pools, regardless of the volume discrepancies between each pool.
The liquidity provider is entitled to a share of earned fees, which is determined in proportion to the
amount of LP tokens held by the liquidity provider and the sum of earned fees across every pool in the
infrastructure. This approach removes the need of the liquidity provider to transfer the liquidity from
low-volume pools, to the ones with greater volume. Additionally, the initial distribution of equal
proportions of provided liquidity is taken care of by the Parent pool. In order to interact with the
infrastructure as a liquidity provider, all actions are taken exclusively through the Parent Pool.

4.2 Liquidity Usage
The user-facing infrastructure of Concero takes optimistic loans from the pool on the destination chain in
order to fast-track the transactions that are en route to settlement. In order for the pool to provide liquidity
in an efficient and secure manner, several measures were implemented.
Every pool exposes a single interface for obtaining the loan which is only callable from within the
infrastructure itself. Any other types of external calls are not allowed inside the pool, making it as isolated
as possible in order to reduce the exposure to potential vulnerabilities.
The runtime efficiency of the user-facing liquidity infrastructure is achieved by minimising storage
operations while obtaining and repaying the loans, with some operations moved to the execution level.

4.3 Deposits
The cross-chain liquidity deposit logic consists of 3 stages with all communication between the LP and
the infrastructure taking place in the parent pool. The liquidity infrastructure uses the well-known concept
of liquidity tokens, which represent a portion of the liquidity with fees the provider is entitled to.

1. LP deposits the funds into the parent pool
2. Parent pool uses CLF to fetch liquidity data on all chains in order to determine the LP amount to

issue to the depositor
3. Parent pool receives liquidity data and issues LP tokens in proportion to the deposit, to the

liquidity provider
4. Parent pool initialises the liquidity distribution using Chainlink CCIP, sending an equal

proportion of the deposit to each of the pools, completing the liquidity provision

4.3.1 Liquidity calculation
After approving a certain amount of tokens, the liquidity provider, who is willing to add liquidity to the
infrastructure, calls a deposit function in the Parent Pool. After checking the approval, the deposit
function logic invokes Chainlink Functions to individually read each of the child pool’s liquidity and
return the sum of the liquidity as an integer back to the parent pool.

For each pool, the total pool liquidity is calculated according to the following formula:
𝑡𝑜𝑡𝑎𝑙𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓(𝑃𝑜𝑜𝑙) + 𝑙𝑜𝑎𝑛𝑠𝐼𝑛𝑈𝑠𝑒 + 𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝐷𝑢𝑒

4.3.2 Liquidity token issuance
After the liquidity is obtained, the following formula is used to determine the amount of LP tokens to be
minted in accordance to the user’s deposit against the total liquidity present in the pools:
𝑙𝑝𝐴𝑚𝑜𝑢𝑛𝑡 = (((𝑇𝑜𝑡𝑎𝑙_𝑈𝑆𝐷𝐶 + 𝑈𝑆𝐸𝑅_𝑈𝑆𝐷𝐶_𝐷𝐸𝑃) * 𝑡𝑜𝑡𝑎𝑙𝐿𝑝𝑇𝑜𝑘𝑒𝑛) / (𝑇𝑜𝑡𝑎𝑙_𝑈𝑆𝐷𝐶)) − 𝑡𝑜𝑡𝑎𝑙𝐿𝑝𝑇𝑜𝑘𝑒𝑛

After obtaining the tokens provided and determining the amount of LP tokens to issue, the Parent pool
calls the LP token contract to mint the required amount for the liquidity provider.

4.3.3 Cross-Chain Liquidity Distribution
The liquidity obtained from the depositor is then distributed in an equal proportion across all pools
(including the parent pool) using Chainlink CCIP, which sends a transaction directly to each of the pools.

4.4 Withdrawals
As with any LP-related actions, the withdrawals are processed strictly through the parent pool, which in a
similar fashion to deposits, interacts with the child pools in order to obtain total liquidity, burn the LP
tokens and perform the withdrawal. As at the point of requesting the withdrawal, the liquidity is
distributed across multiple chains. Therefore, the withdrawal process is split into three parts: the initiation
of the withdrawal, the collection of cross-chain liquidity in the Parent pool, and the completion of the
withdrawal.

4.4.1 Initiating withdrawal
In order to initiate the withdrawal, the liquidity provider must approve the spending (burning) of an
arbitrary portion of LP Tokens that are issued during the deposit.
The parent pool uses the following formula to calculate the liquidity ($USDC in V1) the LP is eligible to
withdraw based on the tokens provided against the total liquidity across all of the pools.

In a similar fashion to deposits, the pool invokes Chainlink Functions in order to obtain total liquidity for
all of the pools according to the following formula:
𝑡𝑜𝑡𝑎𝑙𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓(𝑃𝑜𝑜𝑙) + 𝑙𝑜𝑎𝑛𝑠𝐼𝑛𝑈𝑠𝑒

Then, the amount of USDC the depositor is eligible to withdraw is determined by the following formula:

𝑢𝑠𝑑𝑐𝐴𝑚𝑜𝑢𝑛𝑡 = (𝑡𝑜𝑡𝑎𝑙𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 * 𝑈𝑆𝐸𝑅_𝐿𝑃_𝑅𝐸𝐶𝐸𝐼𝑉𝐸𝐷) / 𝐿𝑃_𝑇𝑜𝑡𝑎𝑙_𝑆𝑢𝑝𝑝𝑙𝑦

4.4.2 Collecting cross-chain liquidity
In order to obtain liquidity that is present on the child pools, the parent pool invokes the CLA+CLF
contract, which is responsible for the delayed triggering of the liquidity withdrawal from child pools back
to the parent pool. After a withdrawal request is placed into the contract, a deadline of +7 days is counted,
after which a liquidity pull will be performed. For automating the task, Chainlink Automations is used,
which check the condition of the contract with every block, and trigger Chainlink Functions for
performing the liquidity pull using one of the authorised messenger wallets, the private key of which is
located in DON-Hosted secrets, similarly to the execution layer of the user-facing infrastructure.

The parent pool is keeping track of the returned liquidity in a struct, originally created during the
withdrawal initiation, and only allows the completion of the withdrawal when all of the pools have
provided the requested liquidity. The struct updates take place when ccipReceive is triggered on the
parent pool, which updates the corresponding withdrawal request, using the data present in the call.

4.4.3 Completing withdrawal
After the liquidity has been collected in the parent pool, the liquidity provider can call the
completeWithdrawal() function in the parent pool, which will burn the LP tokens that were originally
taken and send the liquidity back to the depositor, thus completing the withdrawal process.

Step-by-step breakdown:

1. LP initiates the withdrawal request and approves LP tokens to spend
2. Parent pool obtains cross-chain liquidity of child pools using CLF
3. Parent pool submits a pending withdrawal request to CLA+CLF contract

4. 7 days later, CLA+CLF sends a withdrawal request to child pools, moving the liquidity back to
the parent pool

5. After the liquidity is moved to the parent pool, the LP calls the withdrawal completion, which
burns the LP tokens and returns the liquidity + collected fees

4.4.4 Withdrawal cooldown period
In order to discourage frequent liquidity withdrawals and re-provisions, and in order to provide Concero
with a more stable and predictable liquidity balance across all of the supported chains, a 7-day cooldown
period is introduced before the withdrawal is processed. This cooldown period freezes the amount to be
withdrawn at the time of the initial withdrawal call, thus freezing any potential fee earnings that would
have taken place during the cooldown period.

In order to mitigate potential liquidity use during the withdrawal which is to take place 7 days after the
request, there is a 30-minute buffer, within which the liquidity of the destination chain pool is checked
including the withdrawal request amount, therefore allowing any last loans, in case they were taken, to be
repaid no later than 30 minutes of the withdrawal request, and a 2-hour period, within which the liquidity
is being sent to the parent pool.

5 Messaging
Concero messaging is a cross-chain messaging protocol intended for transfers which don’t incur any
value, thus there is no settlement taking place, as opposed to the cross-chain interoperability infrastructure
of Concero.
There are two key functions which will be available in any airport contract:

- sendMessage (sends a message to the destination chain with arbitrary calldata)
- checkStatus (returns a status for a message by a given message_id: Unverified, Verified,

Executed)

5.1 Airport contracts
Airport contracts are responsible for taking and releasing messages from/to wallets or integrators. After
the function sendMessage() is called on the source chain by any of these entities, the source-chain airport
contract begins the cross-chain message transfer utilising the execution layer, for which Chainlink
Functions is used.

The Airport contract takes the following parameters:
- destination address (which may be a contract in case a call needs to be performed)
- callData (which in case of the contract needs to be passed in a function call)
- Function signature (to indicate which function is to be called on the destination chain)

Airport contract accepts messages from any entity, which could be integrators or users. The fee is taken
for the entire cross-chain message transfer within the initial sendMessage call as per the formula:
𝑡𝑜𝑡𝑎𝑙𝐹𝑒𝑒 = 𝑠𝑟𝑐𝐶𝑙𝑓𝐹𝑒𝑒 + 𝑑𝑠𝑡𝐶𝑙𝑓𝐹𝑒𝑒

5.2 Execution layer
The service of choice used as the execution layer is Chainlink Functions. Its responsibility is to send
messages to the destination chains after being triggered from the source chain. Analogous to the execution
layer in Concero cross-chain interoperability platform, the execution layer uses a messenger wallet with
its private key which is threshold-encrypted in DON-Hosted secrets storage of Chainlink. The architecture
implies that one of the 4 nodes which are executing the code during the call will succeed in posting a
message to the destination chain and a successful fulfilment will be returned to the source to indicate a
status of the message sending operation.

5.3 Risks
Given the messaging infrastructure is not designed to pass value-bearing transactions, the risk profile is
lower. Yet there are still several risks which are similar to the execution layer of the cross-chain
interoperability infrastructure.

5.3.1 Arbitrary contract interaction
The permissionless design behind the messaging protocol implies that it has to interact with any wallets or
contracts from both the source chain and the destination chain. This means that the contracts are at high
risk of common attacks such as the reentrancy attack, the DOS attack or others.

Even though there is no attack that can lead to any type of value loss, in order to ensure stable operation
of the messaging protocol, the following measures are implemented:

- Reentrancy Guards
- Gas limits for function calls
- Allowlisted management/messenger functions
- Upfront fee payment

5.3.2 Execution layer
The execution layer poses the same risks as with the cross-chain interoperability infrastructure, which
have been covered above. These include: Transaction Failure risk, logging risk, Consensus risk,
DON-Hosted secrets leakage risk.

6 Fees & Economic Viability

6.1 Fee Structure
There are four main types of fees that are incurred when using Concero Protocol:

1. Executor fee - fee charged by the executor network (in V1 Chainlink Functions)
2. Settlement fee - fee charged by the settlement layer (in V1 Chainlink CCIP)
3. Gas fee - network gas fees
4. Protocol fee - fee charged by Concero Protocol (and split with LPs)

For a further explanation of the fee structure with examples, please refer to the relevant section in our
official documentation at docs.concero.io

6.2 Capital Efficiency
Due to the nature of our infrastructure, Concero requires a relatively small amount of liquidity to facilitate
a large transaction volume. All of the transactions in V1 are settled through Chainlink CCIP which on
average takes around 24 minutes to settle. This means that the level of liquidity required is equated to
roughly 30 minutes worth of volume that is flowing through Concero cross-chain infrastructure. This
approach ensures that Concero can scale very effectively with an increase in demand.

There are, however, downsides to this approach especially when it comes to larger transactions as there
might not be enough liquidity to facilitate a transaction. In this case, and in any other case of failure of the
execution layer, Concero falls back onto the settlement layer (in V1 Chainlink CCIP) and the user has to
incur longer transaction times. At no point are user funds in any danger. Within our SDK, we will include
transaction simulation so users are made aware that their transaction will take longer in case the fall back
on settlement layer is required before the transaction is initiated. For those developers who are interacting
with the protocol directly through an end-point, we recommend integrating transaction simulation
functionality for better user experience.

6.3 Liquidity Provision
Users can become liquidity providers of the Concero to earn transaction fees of 10bps (0.1%) on every
cross chain value transfer that uses liquidity. The fee will be collected in the asset the pool holds (in V1
we will only have $USDC pools so all of the LP fees are collected in $USDC). In order to ensure that

liquidity providers are exposed to all transactions across all chains, we have used the Parent-Child pool
design where liquidity is provided into a Parent Pool and distributed equally across Child pools.

Our main goal is to ensure that we have a very steady amount of liquidity as large liquidity fluctuations
will lead to a worse user experience for the end user. There are two mechanics that we have implemented
to address this:

1. Parent-Child Design: by exposing every LP to all of the fees that are being collected, LPs do not
have to stake and unstake regularly depending on chain activity to maximise returns. In Concero
V2 we will introduce active liquidity rebalancing where liquidity will be rebalanced depending on
chain activity to further maximise the exposure to fees and to further optimise liquidity
requirements.

2. 7-Day Unstake Period:When a liquidity provider decides to withdraw liquidity they will have to
wait 7 days after the withdrawal request until their assets are claimable. During that 7 day period
the liquidity provider is not exposed to additional fees being collected. This process ensures that
liquidity providers are incentivised to keep their liquidity in. Additionally, it gives other users
who want to provide liquidity a 7 day window to do so. Ideally, if there is enough demand and
volume the level of liquidity will not diverge from the liquidity cap.

6.4 Liquidity Cap
Capping liquidity increases returns for Concero liquidity providers (by maximising the % of in-use
liquidity) and improves the overall security of the protocol (by reducing the downside risk). At the launch
of the protocol, liquidity capping is done manually by the team behind Concero but this process will be
automated and decentralised with future updates. The process is manual at the start to ensure that as the
protocol is deployed and in the early days we can experiment and collect data on LP and user behaviour
so we can determine the best system to manage the cap. You can expect a fully decentralised and
automated system to be integrated within the first 6 months after mainnet launch.

7 What’s next?
The team behind Concero is committed to improving and growing Concero Ecosystem and Concero
Protocol. We are actively developing the next iteration of the protocol and expanding the ecosystem
through various integrations. Follow us on social media to stay updated on our progress. Additionally,
join our regular community calls to ask questions and engage with the team.

7.1 Concero v2
Concero V2 is going to be a major update where we are focusing on expansion of the execution layer and
settlement layers in order to grow the coverage of chains and protocols supported. In V2, users will be
able to perform transactions from any chain to any other chain with a consistent user experience and high
speed. We are also working on transaction batching mechanisms that will reduce end-user transaction
costs. As mentioned previously, we are building an active liquidity re-balancing system that will be able

to pre-emptively migrate liquidity to the chains where higher usage is anticipated in order to optimise for
capital efficiency further.

7.2 Concero Token
We wanted to address the question of a Concero Token within our Whitepaper in order to remain
transparent about the future of the protocol. We strongly believe that the primary attribute of a token
should be its utility. Therefore, we have decided not to launch a token until there is a clear and absolute
need for it. Although it is likely that such a need will eventually arise, the timing of the Concero Token
launch will be determined solely by its utility and necessity, without influence from market conditions,
sentiment, time, or other variables.

8 Acknowledgements
The journey to Concero V1 has been challenging, and it wouldn't have been possible without our
dedicated core team:

1. Nikita Gruzdev - member of the core team (help with building the core infrastructure)
2. Kitu Kuznetsov - member of the core team (product development and user insights)
3. Nithin Shylendra - member of the core team (marketing and communications)
4. Patric ‘Barba’ Carniero - member of the core team (help with building the pool infrastructure)

Chainlink Team has played a crucial role in Concero development by helping with everything from
protocol architecture to partnerships and marketing support. Most notably the following individuals:

1. Ade Fola-Alade - Chainlink Systems Architect (help with Concero architecture)
2. Sam Friedman - Chainlink BUILD CTO (help with Concero architecture)
3. Sergi Rey- Chainlink BUILD (help with integrations and partnerships)
4. Oliver Birch - head of Chainlink BUILD (help with partnerships and fundraising)
5. Nicole Jackson - member relations (help with introductions, partnerships and integrations)

